Solution 10.1
(a) The ime-independent Schrodinger equation for a particle mass m 1s
0. (0) 0),,.(0)
PI( \, (me’ Z) = Er )Wu (X’,}/’Z)
where, 1n this case, the potential V(X y.z) is infinite except in a region 0<x< L,
O<y<L,and 0 <z< L where V(x. y.z) = 0. Hence,
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in the region 0 < x< L, 0 < y< L. 0 <z< L. Each eigenstate y',”(x. . 2) is separable
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such that v} (x. 5. 2) = 0, ()0, (), (2) . The functions ¢, (x). 0, (). and ¢, (2)

are of the form

‘Dl:x( X) = ‘\/%Sin(kn/‘,X)
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where k, = —

. L

the unperturbed system are
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W a3 2) = (5] sin(h,xsin(k, psin(h,y)

and n, 1s a non-zero positive integer. Hence, the eigenfunctions for

(b) Substituting the eigenfunctions into the time-independent Schrodinger equation

gives eigenenergies
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where 11;, n,, and n, are non-zero positive integers.
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The degeneracy of the ground state (1, 1, 1) i1s one and the degeneracy of the first
excited state ((1,1,2), (1,2,1), (2,1,1)) 1s three.

(¢) The system is perturbed by introducing a potential W = V, in a region for

which 0 < x< % 0<y< % and 0 <z< L. The perturbation W = 0 elsewhere and

V; 1s a constant. The new ground state energy is given by the diagonal matrix element
of non-degenerate perturbation theory. Hence,
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(d) The first excited state is three-fold degenerate and so we must use degenerate

. .. . 0 0 0y -
perturbation theory. The 3 x 3 sub-matrix in the basis {W(l Do \p(lz)l, wg 0} is
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The diagonal matrix elements are

Wi = Wy = Way = (Wil My
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The off-diagonal elements

(0) (0) (0) (0)
Wy, = Wy = {yppl W|\|f121> = (Y2l W]Wuz

(Z) Vo j Sm(LX) de Sln(l) Slﬂ(% d}/jSln[ LZ) sm( LZ) dz =0

and

Wiy =W, = <\lf(101)2| mw(ﬁi) = <w§?i|ﬂ4wi°&

= (%)3 VUTsin(Z%t) sin(% dXT sin{% dyzsin(%z) sin[zTM) dz =0
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= Wy, = (i M) = Qs My

- (%)3 VULfsin(Z%Y) sin(% dXLf sin[% sin(% dygsinz(% dz

which may be rewitten as
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where we used the fact that j‘smz(—z) dz = 5" Performing the integral
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Hence,
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We seek solutions to
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(H-El)|a,| = (H”+W-E1)|a,| = IO 9’ || a,| = 0
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which has characteristic equation
(1-E)((1-B(1-E)-A") = (1-E)(E -2E+(1-4)) =
with roots

E=1

and
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where we set A = 6—42
97

The new energy levels are
E(uz =

with eLgenstate
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and
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with eigenstate
1
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and
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with eigenstate

W= -
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The orginally degenerate energy levels of the first excited state split into new
energy levels because when the perturbation is turned on there are contributions from
both diagonal and oft-diagonal matrix elements.



Solution 10.2
(a) The exact eigenvalues of H are found by solving the secular equation

1-E A 0
[H”+W-1H =| A 3-FE 0 =0

0 0 2+A-E
(1-E)3-E)-A)R2+A-E) = (E-4FE+3-A)2+A-F) =0

has solutions

2
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E=2+A

-bz A/b2 +4ac
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where we used the fact that ax” + bx+ ¢ = 0 has solution x = 5
a

Hence, the exact eigenvalues are
/ 2
E =2+J1+A

Ez 2 - 1+A2
E, =2+A

The eigenfunctions are found by substituting the eigenvalues into the matrix equation.

For eigenvalue F, = 2+ /1 + A® we have

1-(2+4J1+AY A 0 a,
A 3-(2+4J1+AY 0 a =0

0 0 24A- (241477 |
so that

(-1-J1+A%a, +Aa, = 0
Aa+(1-J1+A%a, =0
(A-AJ1+AYa, =0

-Aa,

Let a; = 0 and a;, = 1 then a, = ————_ We can check this result by substi-
(1-41+A%

tuting back into the matrix equation to give
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I+ 1+ A1 -J1+AH-A* = 0
(1+J1+A(1-A1+AH+A* = 0
T+ +A = J1+A 1A+ A% = 0

Similarly for eigenvalue F, = 2 - 4/1 + A* we have




1-(2-4J1+A% A 0 a,
A 3-(2-J1+AY 0 a =0

0 0 24 A-(2-A1+2% |
so that

(-3+ 41 +A2)31+Aaz =0
Aa, + (1 +1+A%a, = 0
(A + 41 +A2)a3 =0
-Aa,

Let a; = 0 and a; = 1 then a, = —————— We can check this result by substi-
(1+ A1+ A%

tuting back into the matrix equation to give
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(1+A/‘1+A2) (1+»\/1+A2)

(-1+ 1+ A1+ J1+AH-A" =0
—1+A/1+A2—A/1+A2+1—A2+A2 =0

So the three eigenstates ¢, ¢, ¢3 associated with eigenvalues F,, E,, and E;

respectively, are

_ 1 -
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0, = A
2 (1+A/1+A2)
| 0 -
0
03 = |0
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The normalization constant A for the state ¢, proceeds by finding the value ot 4 such
that AZ(DT(]) 1 = 1. To check the orthogonality of ¢, and ¢, we need to show that
010, = 0.
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(b) The eigenvalues of the perturbed system to second-order in time-independent
perturbation theory are

1+
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E = ES)(IJ)J" [/me+ Z M
n#m E)[IJ) - E}O)
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The values of E are just the eigenvalues for the unperturbed states. These are

obtained directly from the diagonal marix elements of the unperturbed Hamiltonian

100
Hy=1030
002

and so Ef” = LE%U) = 3, and EEU) =2.

The first-order correction to the energy eigenvalues is given by the diagonal matrix
elements of the perturbation

0A0
W=1a00
00A
and so El) = O,E(Zl) = 0, and E(gl) = A.

The second-order correction to the energy eigenvalues is given by
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We can now write down the eigenvalues of the perturbed system to second-order in
time-independent perturbation theory. They are

AZ
E =1-2
' 2

AZ
E, =3+=
2 +2
E, =2+A

(c) If we expand the expression for the exact result in a binomial series we obtain

E-2+J1+A - 2J_r(1+%2+...)
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giving F, = 1- > and F, = 3+ > So we may conclude that second order pertur-

bation theory (b) are in agreement with the exact results of (a).



Solution 10.4
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(a) For the box potential the eigenenergies are E, = — and because the energy of
2m L
6m’n’ 2 2
the electron 1s given as F, = —— Wwe have n° = 6. The number n° satisfies
2m L

0= Hi+H}2.+H§ = 6 which can only be true for (n, =1, n, =1, n, = 2),
(n, =1,n=2,n=1)and(n, = 2,n, =1,n, = 1) Hence the degeneracy is

3 and the three wave functions are

V(XY 2) = Esin(?)sin(%sin(z%
Yo (kY. 2) = @Sin(i%)sin(z% Sin(j%z)
Yo (X ). 2) = ESiH(Z%X)SiH(%Sin(%Z)

The time-independent Schrédinger equation for the unperturbed system in matrix form
1S

H,-E 0 0 a
(H-El)a = 0 H,-E 0 a,
0 0 H,-E|a,

The perturbing potential is

W= elE|z
In matrix form we have

(1.1,2|2]1, 1. 2) (1. 1, 2|21, 2, 1) (1, 1, 2|42, 1. 1)
W = elE|[(1,2, 1121. 1.2) (1.2, 1|71, 2. 1) (1. 2. 1|22. 1. 1)
(2.1, 1|21, 1. 2) (2.1, 1|21, 2. 1) (2, 1. 1|42, 1. 1)
The diagonal matrix elements are found noting
(1.,1.2]121.1. 2) = (L. 2. 1|71, 2. 1) = (2.1,1|72.1. 1)

and solving
I

2.1, 1]22.1. 1) = %jL'sinz(Z%Y)dxj%sinl(ELX)dij'Zsinz(%Z)dz _ %j zsm{’%z)dz _
0 0 0 0

The off-diagonal matrix elements

(L.2.1]21.1. 2) = (2. 1.1|41.2. 1) = (2.1.1|21.1.2) = 0
and so the new energy eigenvalues are
_ 3n’h’ . elE|L

m I 2

(b) Using m = 0.07xm, we obtain an unperturbed energy level value of
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The perturbation due to application of an electric field of strength

|E| = 10 Vem ™' = 10° V m™" shifts this level by

eE[L _ 1.6x10"x10°x20x 10"
2 2

= 80 meV

= 10 meV

Solution 10.5
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(a) The eigenenergies of the unperturbed Hamiltonian are E) = ?I(DU(H+ z) for

. Lo 1
n=0,1,2..... The first-order correction is E" = W,, where W,, = (nWn) so

. . 0
that the new energy eigenvalues to first-order are E, = EV+W,.

j o
By = "0 Any = 220014 90
2 2
_ 3hw,
2

5w, Al ho
E2= 20+TO=TU(5+A)

Thwo,
2

(b) The new energy eigenvalues to second-order are given by

E = E(O) + W + Z | W;HII| ’
n - n nn 0 —0
m#n Eio) - ES)?)

Egz

and so
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